Skip to contents

Remove cardinal biases

Usage

remove_cardinal_biases(
  err,
  x,
  space = "180",
  bias_type = "fit",
  plots = "hide",
  poly_deg = 4,
  var_sigma = TRUE,
  var_sigma_poly_deg = 4,
  reassign_at_boundaries = TRUE,
  reassign_range = 2,
  break_points = NULL,
  init_outliers = NULL,
  debug = FALSE,
  do_plots = NULL
)

Arguments

err

a vector of errors, deviations of response from the true stimuli

x

a vector of true stimuli in degrees (see space)

space

circular space to use (a string: 180 or 360)

bias_type

bias type to use (fit, card, obl, or custom, see details)

plots

a string hide, show, or return to hide, show, or return plots (default: hide)

poly_deg

degree of the fitted polynomials for each bin (default: 4)

var_sigma

allow standard deviation (width) of the fitted response distribution to vary as a function of distance to the nearest cardinal (default: True)

var_sigma_poly_deg

degree of the fitted polynomials for each bin for the first approximation for the response distribution to select the best fitting model (default: 4)

reassign_at_boundaries

select the bin for the observations at the boundaries between bins based on the best-fitting polynomial (default: True)

reassign_range

maximum distance to the boundary at which reassignment can occur (default: 2 degrees)

break_points

can be used to assign custom break points instead of cardinal/oblique ones with bias_type set to custom (default: NULL)

init_outliers

a vector determining which errors are initially assumed to be outliers (default: NULL)

debug

print some extra info (default: False)

do_plots

deprecated, use the parameter plots instead

Value

If plots=='return', returns the three plots showing the biases (combined together with patchwork::wrap_plots()). Otherwise, returns a list with the following elements:

  • is_outlier - 0 for outliers (defined as ±3*pred_sigma for the model with varying sigma or as ±3\*SD for the simple model)

  • pred predicted error

  • be_c error corrected for biases (be_c = observed error - pred)

  • which_bin the numeric ID of the bin that the stimulus belong to

  • bias the bias computed as described above

  • bias_typ bias type (cardinal or oblique)

  • pred_lin predicted error for a simple linear model for comparison

  • pred_sigma predicted SD of the error distribution

  • coef_sigma_int, coef_sigma_slope intercept and slope for the sigma prediction

Details

If the bias_type is set to fit, the function computes the cardinal biases in the following way:

  1. Create two sets of bins, splitting the stimuli vector into bins centered at cardinal and at oblique directions.

  2. For each set of bins, fit a nth-degree polynomial for the responses in each bin, optionally allowing the distribution of responses to vary in width as a function of distance to the nearest cardinal (regardless of whether the bins are centered at the cardinal or at the oblique, the width of the response distribution usually increases as the distance to cardinals increase).

  3. Choose the best-fitting model between the one using cardinal and the one using oblique bins.

  4. Compute the residuals of the best-fitting model - that's your bias-corrected error - and the biases (see below).

The bias is computed by flipping the sign of errors when the average predicted error is negative, so, that, for example, if on average the responses are shifted clockwise relative to the true values, the trial-by-trial error would count as bias when it is also shifted clockwise.

If bias_type is set to obl or card, only one set of bins is used, centred at cardinal or oblique angles, respectively.

For additional examples see the help vignette: vignette("cardinal_biases", package = "circhelp")

References

  • Chetverikov, A., & Jehee, J. F. M. (2023). Motion direction is represented as a bimodal probability distribution in the human visual cortex. Nature Communications, 14(7634). doi:10.1038/s41467-023-43251-w

  • van Bergen, R. S., Ma, W. J., Pratte, M. S., & Jehee, J. F. M. (2015). Sensory uncertainty decoded from visual cortex predicts behavior. Nature Neuroscience, 18(12), 1728–1730. doi:10.1038/nn.4150

Examples


# Data in orientation domain from Pascucci et al. (2019, PLOS Bio),
# https://doi.org/10.5281/zenodo.2544946

ex_data <- Pascucci_et_al_2019_data[observer == 4, ]
remove_cardinal_biases(ex_data$err, ex_data$orientation, plots = "show")

#>      is_outlier       pred        be_c which_bin  bias bias_type    pred_lin
#>           <num>      <num>       <num>     <num> <num>    <char>       <num>
#>   1:          0  7.9231406  -4.9231406         2     3       obl   7.7417971
#>   2:          0 -0.1308394   1.1308394         2    -1       obl  -0.3993174
#>   3:          0  1.2207704  -4.2207704         2    -3       obl   0.6511490
#>   4:          0 -8.7810566  10.7810566         1    -2       obl  -9.8423470
#>   5:          0 -8.6973985   0.6973985         2     8       obl  -6.1768825
#>  ---                                                                        
#> 436:          0 -2.1183875   1.1183875         1     1       obl  -1.2501447
#> 437:          0 -8.6734938 -10.3265062         2    19       obl -11.1665978
#> 438:          1 -7.5719139  21.5719139         2   -14       obl  -5.3890327
#> 439:          0  1.5455219  -2.5455219         2    -1       obl   0.9137656
#> 440:          0 -1.5454397   0.5454397         2     1       obl  -1.4497838
#>      pred_sigma coef_sigma_int coef_sigma_slope shifted_x total_log_lik
#>           <num>          <num>            <num>     <num>         <num>
#>   1:   6.581614       2.008436    -0.0041385327        15     -1439.084
#>   2:   7.420878       2.008436    -0.0041385327        46     -1439.084
#>   3:   7.359709       2.008436    -0.0041385327        42     -1439.084
#>   4:   6.048106       1.835112    -0.0009307184        -7     -1439.084
#>   5:   6.775070       2.008436    -0.0041385327        68     -1439.084
#>  ---                                                                   
#> 436:   6.202017       1.835112    -0.0009307184       -34     -1439.084
#> 437:   6.262739       2.008436    -0.0041385327        87     -1439.084
#> 438:   6.859711       2.008436    -0.0041385327        65     -1439.084
#> 439:   7.329313       2.008436    -0.0041385327        41     -1439.084
#> 440:   7.299043       2.008436    -0.0041385327        50     -1439.084

# Data in motion domain from Bae & Luck (2018, Neuroimage),
# https://osf.io/2h6w9/
ex_data_bae <- Bae_Luck_2018_data[subject_Num == unique(subject_Num)[5], ]
remove_cardinal_biases(ex_data_bae$err, ex_data_bae$TargetDirection,
  space = "360", plots = "show"
)

#>       is_outlier       pred        be_c which_bin    bias bias_type    pred_lin
#>            <num>      <num>       <num>     <num>   <num>    <char>       <num>
#>    1:          1  -8.170082  177.570082         4 -169.40       obl  -4.9493375
#>    2:          0  -4.274308   -1.725692         4    6.00       obl  -3.4904611
#>    3:          1  -1.536582  179.086582         4 -177.55       obl  -2.3017470
#>    4:          0  -8.127875  -32.872125         4   41.00       obl  -5.5977270
#>    5:          1 -12.621761 -162.328239         3  174.95       obl -10.0644723
#>   ---                                                                          
#> 1276:          0  -3.467410   -2.532590         3    6.00       obl  -3.1784946
#> 1277:          0  -0.857953    2.857953         2   -2.00       obl  -0.9756321
#> 1278:          0  -1.282251  -12.017749         2   13.30       obl  -2.8733208
#> 1279:          0  -2.482519    9.482519         4   -7.00       obl  -2.7340066
#> 1280:          1   5.470358 -181.670358         1 -176.20       obl  10.9248285
#>       pred_sigma coef_sigma_int coef_sigma_slope shifted_x total_log_lik
#>            <num>          <num>            <num>     <num>         <num>
#>    1:   13.29616       2.556561     0.0034349606     234.0     -4999.393
#>    2:   13.71362       2.556561     0.0034349606     207.0     -4999.393
#>    3:   14.79011       2.556561     0.0034349606     185.0     -4999.393
#>    4:   13.85567       2.556561     0.0034349606     246.0     -4999.393
#>    5:   15.11852       2.757918    -0.0009766969     178.0     -4999.393
#>   ---                                                                   
#> 1276:   15.50735       2.757918    -0.0009766969     152.0     -4999.393
#> 1277:   27.85360       3.482895    -0.0219623385      52.1     -4999.393
#> 1278:   13.37544       3.482895    -0.0219623385      85.5     -4999.393
#> 1279:   14.38922       2.556561     0.0034349606     193.0     -4999.393
#> 1280:   14.03739       3.163758    -0.0133854689     -84.0     -4999.393

# Using a stricter initial outlier boundary

remove_cardinal_biases(ex_data_bae$err, ex_data_bae$TargetDirection,
  space = "360", plots = "show",
  init_outliers = abs(ex_data_bae$err) > 60
)

#>       is_outlier       pred        be_c which_bin    bias bias_type  pred_lin
#>            <num>      <num>       <num>     <num>   <num>    <char>     <num>
#>    1:          1  -9.113946  178.513946         4 -169.40       obl -4.710449
#>    2:          0  -2.806203   -3.193797         4    6.00       obl -3.476563
#>    3:          1  -2.094947  179.644947         4 -177.55       obl -2.471175
#>    4:          1  -8.951250  -32.048750         4   41.00       obl -5.258842
#>    5:          1 -11.247061 -163.702939         3  174.95       obl -9.952609
#>   ---                                                                        
#> 1276:          0  -4.297750   -1.702250         3    6.00       obl -3.147991
#> 1277:          0  -3.552364    5.552364         2   -2.00       obl -1.006986
#> 1278:          0  -1.312257  -11.987743         2   13.30       obl -3.046211
#> 1279:          0  -1.224265    8.224265         4   -7.00       obl -2.836771
#> 1280:          1   6.492975 -182.692975         1 -176.20       obl 11.762122
#>       pred_sigma coef_sigma_int coef_sigma_slope shifted_x total_log_lik
#>            <num>          <num>            <num>     <num>         <num>
#>    1:   9.563944       2.296165     -0.004240535     234.0     -4106.563
#>    2:   9.205815       2.296165     -0.004240535     207.0     -4106.563
#>    3:   8.385832       2.296165     -0.004240535     185.0     -4106.563
#>    4:   9.089444       2.296165     -0.004240535     246.0     -4106.563
#>    5:   9.677623       2.137990      0.003065721     178.0     -4106.563
#>   ---                                                                   
#> 1276:   8.936174       2.137990      0.003065721     152.0     -4106.563
#> 1277:   7.358394       1.892981      0.014487437      52.1     -4106.563
#> 1278:  11.937946       1.892981      0.014487437      85.5     -4106.563
#> 1279:   8.675195       2.296165     -0.004240535     193.0     -4106.563
#> 1280:   7.510183       1.892083      0.003184029     -84.0     -4106.563

# We can also use just one bin by setting `bias_type` to custom
# and setting the `break_points` at the ends of the range for x

remove_cardinal_biases(ex_data_bae$err, ex_data_bae$TargetDirection,
  space = "360", bias_type = "custom",
  break_points = c(-180, 180), plots = "show",
  reassign_at_boundaries = FALSE, poly_deg = 8,
  init_outliers = abs(ex_data_bae$err) > 60
)

#>       is_outlier       pred         be_c which_bin    bias bias_type   pred_lin
#>            <num>      <num>        <num>     <num>   <num>    <char>      <num>
#>    1:          1 -9.3547551  178.7547551         1 -169.40    custom -0.3342663
#>    2:          0 -2.5809200   -3.4190800         1    6.00    custom -0.3327065
#>    3:          1 -4.4192576  181.9692576         1 -177.55    custom -0.3314355
#>    4:          1 -9.5398446  -31.4601554         1   41.00    custom -0.3349595
#>    5:          1 -7.0169649 -167.9330351         1  174.95    custom -0.3310311
#>   ---                                                                          
#> 1276:          0 -5.0038536   -0.9961464         1    6.00    custom -0.3295290
#> 1277:          0 -3.9178042    5.9178042         1   -2.00    custom -0.3237577
#> 1278:          0  0.6855594  -13.9855594         1  -13.30    custom -0.3256872
#> 1279:          0 -1.6660057    8.6660057         1   -7.00    custom -0.3318977
#> 1280:          1  4.0545242 -180.2545242         1 -176.20    custom -0.3366927
#>       pred_sigma coef_sigma_int coef_sigma_slope shifted_x total_log_lik
#>            <num>          <num>            <num>     <num>         <num>
#>    1:   8.778540       2.164489     0.0001448273    -126.0     -4139.606
#>    2:   8.744280       2.164489     0.0001448273    -153.0     -4139.606
#>    3:   8.716463       2.164489     0.0001448273    -175.0     -4139.606
#>    4:   8.793810       2.164489     0.0001448273    -114.0     -4139.606
#>    5:   8.712677       2.164489     0.0001448273    -182.0     -4139.606
#>   ---                                                                   
#> 1276:   8.745546       2.164489     0.0001448273    -208.0     -4139.606
#> 1277:   8.872999       2.164489     0.0001448273    -307.9     -4139.606
#> 1278:   8.830182       2.164489     0.0001448273    -274.5     -4139.606
#> 1279:   8.726568       2.164489     0.0001448273    -167.0     -4139.606
#> 1280:   8.832100       2.164489     0.0001448273     -84.0     -4139.606